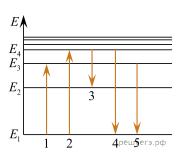
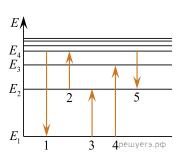

1. На диаграмме показаны переходы атома водорода между различными энергетическими состояниями, сопровождающиеся либо излучением, либо поглощением фотонов. Поглощение фотона с наибольшей длиной волны  $\lambda_{max}$  происходит при переходе, обозначенном цифрой:

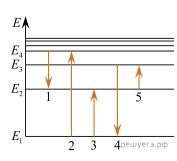



- 1) 1 2) 2
- 3)3
- 4) 4
- 5) 5

5) 5

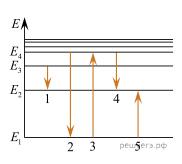

**2.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями, сопровождающиеся либо излучением, либо поглощением фотонов. Поглощение фотона с наименьшим импульсом  $p_{\min}$  происходит при переходе, обозначенном цифрой:




- 1) 1 2) 2 3) 3 4) 4
- **3.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями, сопровождающиеся либо излучением, либо поглощением фотонов. Поглощение фотона с наибольшей длиной волны  $\lambda_{max}$  происходит при переходе, обозначенном цифрой:



- 1) 1 2) 2 3) 3 4) 4 5) 5
- **4.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями, сопровождающиеся либо излучением, либо поглощением фотонов. Поглощение фотона с наибольшей частотой  $\nu_{max}$  происходит при переходе, обозначенном цифрой:



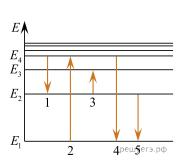

- 1) 1 2) 2 3) 3 4) 4 5) 5
- **5.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями, сопровождающиеся либо излучением, либо поглощением фотонов. Поглощение фотона с наименьшей частотой  $\nu_{min}$  происходит при переходе, обозначенном цифрой:



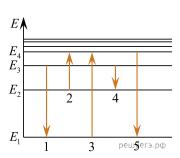
1) 1 2) 2 3) 3 4) 4 5) 5

**6.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями, сопровождающиеся либо излучением, либо поглощением фотонов. Поглощение фотона с наибольшей частотой  $\nu_{max}$  происходит при переходе, обозначенном цифрой:




- 1) 1 2) 2 3) 3 4) 4 5) :
- 7. Атом водорода при переходе с шестого энергетического уровня ( $E_6=-6,02\cdot 10^{-20}~$ Дж) на первый ( $E_1=-2,17\cdot 10^{-18}~$ Дж) испускает фотон, модуль импульса p которого равен:

1) 
$$7,03 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{c}$$
 2)  $1,61 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{c}$  3)  $6,03 \cdot 10^{-28} \frac{\text{K}\Gamma \cdot \text{M}}{c}$  4)  $2,53 \cdot 10^{-28} \frac{\text{K}\Gamma \cdot \text{M}}{c}$  5)  $8,83 \cdot 10^{-29} \frac{\text{K}\Gamma \cdot \text{M}}{c}$ 


**8.** Атом водорода при поглощении фотона перешел со второго энергетического уровня (  $E_2 = -5,42\cdot 10^{-19}~\rm Дж$ ) на четвертый (  $E_4 = -1,36\cdot 10^{-19}~\rm Дж$ ). Модуль импульса p фотона равен:

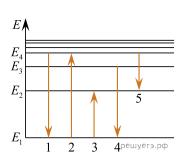
1) 
$$1,02 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$$
 2)  $1,35 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$  3)  $5,41 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$  4)  $6,43 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$  5)  $6,78 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 

**9.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями. Излучение фотона с наибольшим импульсом p происходит при переходе, обозначенном цифрой:



- 1) 1 2) 2 3) 3 4) 4 5) 5
- **10.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями. Излучение с наименьшей длиной волны  $\lambda$  атом испускает при переходе, обозначенном цифрой:

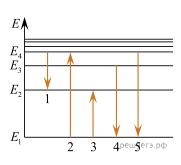



- 1) 1 2) 2 3) 3 4) 4 5) 5
- 11. Атом водорода при переходе с шестого энергетического уровня ( $E_6=-6,04\cdot 10^{-20}~$ Дж) на четвертый ( $E_4=-1,36\cdot 10^{-19}~$ Дж) испускает фотон, модуль импульса p которого равен:

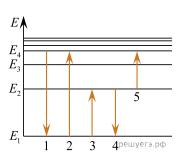
1) 
$$7,03 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$$
 2)  $1,61 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$  3)  $6,03 \cdot 10^{-28} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$  4)  $2,52 \cdot 10^{-28} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$  5)  $8,83 \cdot 10^{-29} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 

**12.** Атом водорода при поглощении фотона перешел с первого энергетического уровня (  $E_1=-2,17\cdot 10^{-18}~\rm Дж$ ) на второй (  $E_2=-5,42\cdot 10^{-19}~\rm Дж$ ). Модуль импульса p фотона равен:

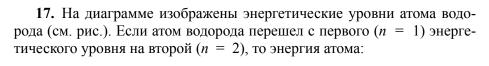
1) 
$$1,02 \cdot 10^{-27} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$$
 2)  $1,35 \cdot 10^{-27} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$  3)  $5,43 \cdot 10^{-27} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$  4)  $6,43 \cdot 10^{-27} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$  5)  $6,78 \cdot 10^{-27} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$ 


**13.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями. Излучение с наименьшей частотой **v** атом испускает при переходе, обозначенном цифрой:

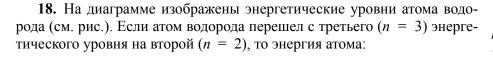


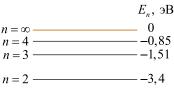

- 1) 1 2) 2 3) 3 4) 4 5) 5
- **14.** Атом водорода при переходе с шестого энергетического уровня ( $E_6=-6,02\cdot 10^{-20}~{\rm Дж}$ ) на третий ( $E_3=-2,41\cdot 10^{-19}~{\rm Дж}$ ) испускает фотон, модуль импульса p которого равен:

1) 
$$7,03 \cdot 10^{-27} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$$
 2)  $1,61 \cdot 10^{-27} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$  3)  $6,03 \cdot 10^{-28} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$  4)  $2,53 \cdot 10^{-28} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$  5)  $8,83 \cdot 10^{-29} \frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{\mathrm{c}}$ 


15. На диаграмме показаны переходы атома водорода между различными энергетическими состояниями. Излучение с наименьшей частотой V атом испускает при переходе, обозначенном цифрой:

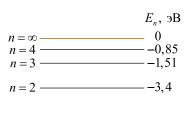



- 1) 1 2) 2 3) 3 4) 4 5) 5
- **16.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями. Излучение с наибольшей длиной волны  $\lambda$  атом испускает при переходе, обозначенном цифрой:




1) 1 2) 2 3) 3 4) 4 5) 5










$$n=1$$
 — peuryd 3,6

**19.** На диаграмме изображены энергетические уровни атома водорода (см. рис.). Если атом водорода перешел с первого (n = 1) энергетического уровня на третий (n = 3), то энергия атома:



$$n=1$$
 peuy 13,61

**20.** Энергия атома водорода в основном состоянии  $E_1 = -13,60$  эВ, а энергия атома водорода в возбуждённом состоянии  $E_2 = -0,85$  эВ. Если атом перейдёт из основного состояния в возбуждённое, то энергия атома изменится на  $\Delta E$ , равное:

**21.** Если при переходе атома водорода из одного стационарного состояния в другое был испущен квант электромагнитного излучения с длиной волны  $\lambda = 1, 22 \cdot 10^{-7} \,\mathrm{M}$ , то модуль разности энергий  $|\Delta E|$  атома водорода в этих стационарных состояниях равен:

**22.** Если при переходе атома водорода из одного стационарного состояния в другое был испущен квант электромагнитного излучения частотой  $v=4,6\cdot 10^{14}~\Gamma$ ц, то модуль разности энергий  $|\Delta E|$  атома водорода в этих стационарных состояниях равен: